「深度職業思考(TEMP)」修訂間的差異

出自汝等是人是狼wiki
跳至導覽 跳至搜尋
 
(未顯示由 1 位使用者於中間所作的 1 次修訂)
行 5: 行 5:
如果你看完之後,已經平安的完成20場以上,恭喜你已經踏入了人狼遊戲世界的大門。
如果你看完之後,已經平安的完成20場以上,恭喜你已經踏入了人狼遊戲世界的大門。
|-  
|-  
|[[檔案:beato1.png]] || 不過有人注意到嗎?前一頁的排序方式。
|[[檔案:beato1.png]] || 傳統人狼職業的遊戲難度:
為什麼妾身不是照占卜師→靈能者→獵人→....的方式介紹,而是村人→共有者→占卜師→獵人→....這樣的順序呢?
村人→共有者→靈能者→埋毒者→占卜師→獵人→人狼→狂人→背德→妖狐
|-  
|-  
|[[檔案:beato9.png]] || 其實答案很簡單。因為這是實際上人狼職業的遊戲難度!
|[[檔案:beato9.png]] || 村民是最簡單的,你不需要承擔被質疑的壓力,導引村民勝利的壓力早期也不在你身上。
村民是最簡單的,你不需要承擔被質疑的壓力,導引村民勝利的壓力早期也不在你身上。
共有者不過是可以討論的必白村民,承受的是後期壓力。
共有者不過是可以討論的必白村民,承受的是後期壓力。
靈能者只要在R靈日時跳靈,提供資訊後就乖乖被R靈上天國好了(?
埋毒者要乖乖表現像一個會推理的村民,就能夠討狼咬。
占卜師開始要主動推理找出狼人,不過說真的,他只要能提供情報就可以了。
占卜師開始要主動推理找出狼人,不過說真的,他只要能提供情報就可以了。
獵人、靈能需要判別場上的大概分配,在最好的時機導引村莊走向勝利。
獵人需要判別場上的大概分配,在最好的時機導引村莊走向勝利。
'''但是,這些情報,都是人狼留給你的。'''  
'''但是,這些情報,都是人狼留給你的。'''  


行 96: 行 97:
|-  
|-  
|[[檔案:Ed_Knave1.png|100px]] || 第三回合開始。不過……這開始變得複雜起來了……[[Talk:深度職業思考(TEMP)#Round 3|不得不用表格了]]。
|[[檔案:Ed_Knave1.png|100px]] || 第三回合開始。不過……這開始變得複雜起來了……[[Talk:深度職業思考(TEMP)#Round 3|不得不用表格了]]。
|}
----
<center>~七年後~</center>
<center>……<big><big><big><big><big><big><big>「'''マルコフ・チェーン'''」。</big></big></big></big></big></big></big></center>
{| style="text-align:left"
|-
|[[檔案:LatterKnave1.png|100px]] || ……五雷正法渡鏡海,一道靈光入玄關,文昌帝君急急如律令,敕!<!--Not a valid spell.-->
|-
|[[檔案:LatterKnave2.png|100px]] || 在[[wikipedia:zh:馬可夫鏈|馬可夫鏈]]的加護之下,我將解題的數據帶來了,它列出了指定時間之內指定事態的機率直到第十回合。
|-
|[[檔案:LatterKnave3.png|100px]] || 遙想當初,找出通式的嘗試其實就已隱含了馬可夫鏈的精神,只是當時還沒發現如何將運算自動化而已。<br>現在先回去設題那邊。
|-
|[[檔案:LatterKnave2b.png|100px]] || 因為A、B兩者的舉動,在這五題,我們只需選取符合條件的事態的機率簡單處理,而不需再作複雜的處理。<br>
我指的是只有當前事態的機率分佈,也必定可以即座判斷所需的條件有沒有符合,或是只需簡單處理即可取得所需機率。
|-
|[[檔案:LatterKnave6.png|100px]] || 鑒於網絡流量攸關,運行需時,我這次用了電腦習慣的小數而不是分數,算到一定次數就可能會有[[wikipedia:zh:捨入誤差|捨入誤差]],這一點還請注意。<br>
想知道詳情的話也可以直接來這兒[https://docs.google.com/spreadsheets/d/1kE_gaG31iZ_4I5GwZAoEvLuCnL7RIy2VRqBrakqHpnE 看試算表]。
|-
|[[檔案:LatterKnave2b.png|100px]] || 第一題:「A在8次取球內,每一次把白球或紫球取出的機率。」<br>
這題不是直接加總,但還解得出。看事件的流向,將相應事態的機率乘以A抓到白或紫球的的機率即可。
|-
|[[檔案:LatterKnave4.png|100px]] || 抓白球的機率表在Q1a那頁。論一切事態的總和,則第一回合起算分別為約:<br>
13.333...%、15.018%、16.552%、18.216%、20.143%、22.597%、26.264%、33.727%。<br>
抓紫球的機率表在Q1b那頁。論一切事態的總和,則第一回合起算分別為約:<br>
6.666...%、7.(912087)...%、8.(9876789)%、10.159%、11.529%、13.299%、15.990%、21.554%。
……還看得出可見的粗略規律吧,我猜。
|-
|[[檔案:LatterKnave4.png|100px]] || 第二題:「A在4次取球內取出紫球的機率。」<br>
紫球有否被A取出,可從當前事態即座判斷。將紫球除外這種事情只有A才會幹。<br>
在t=4的場合,是第四次取球完成的情形,將t=4一表所有無紫的事態加在一起即可。
因此,機率大約會是33.725%。
|-
|[[檔案:LatterKnave4.png|100px]] || 第三題:「不考慮紫球下,A在8次取球內,每一次把白球取出的機率。」備註「此時紫球等同紅球。」<br>
這個與第一題同類。看著相應事態與通式,將它的機率乘以其「減白」判定的機率即可。
|-
|[[檔案:LatterKnave5.png|100px]] || ……慢著。這樣的話,解答不就是在Q1a的機率表嗎?--好吧。
|-
|[[檔案:LatterKnave4.png|100px]] || 第四題:「B每一次拿到紫球的機率。」<br>
也是與第一題同類。紫球被B取出的同時,可以發生兩種結果。若AB兩者取得同一顆紫球,那就是「減紫」但不「減紅」,否則即是「顯紫」。<br>
根據通式,將每一事態的機率乘以「B取紫」事件機率即可。
機率表在Q4那頁。論一切事態的總和,則第一回合起算,直到第十一回合執行的一瞬為止分別為約:
7.(692307)...%、7.(692307)...%、……
|-
|[[檔案:LatterKnave6.png|100px]] || 呃……好啦,我知道啦。首兩回合的數值剛好一樣,我也沒料到啊。
|-
|[[檔案:LatterKnave4.png|100px]] || 我們繼續吧,第三回合起算:
7.7712%、7.7948%、8.2549%、8.7371%、9.4817%、9.2810%、2.9763%、0.22942%、0.0053949%。
|-
|[[檔案:LatterKnave5.png|100px]] || 如今,您們大概都可以看見我的數據在第八回合就開始崩潰了,在這時間點,會有35.31%的機率是所有的球都被拿光了。<br>
之後的情形類推到人狼界的現實,早就該R占R靈之類去了吧。
|-
|[[檔案:LatterKnave4.png|100px]] || 第五題:「A在6次取球中,完全沒有拿到白球的機率。」<br>
與第二題同樣,白球有否被A取出,可從當前事態即座判斷,因為白球只有A才想碰。<br>
將t=6一表一切含有二白的事態加在一起即可。
因此,機率大約會是23.175%。
|-
|[[檔案:LatterKnave8.png|100px]] || 呼--睽違七年,總算將魔女的模型問題算好了。電腦科學的加護啊……
如果維基的所見即所得模式支援表格複製的話,解說起來會輕鬆得多。
|-
|[[檔案:LatterKnave7.png|100px]] || 不過,我在人狼界裡還欠了另一個更重大的人情,這邊就先到此為止了。
|}
|}

於 2018年1月15日 (一) 17:31 的最新修訂

Beato1.png 不曉得各位看完了前面那一頁最基本的玩法了嗎?

如果你看完之後,已經平安的完成20場以上,恭喜你已經踏入了人狼遊戲世界的大門。

Beato1.png 傳統人狼職業的遊戲難度:

村人→共有者→靈能者→埋毒者→占卜師→獵人→人狼→狂人→背德→妖狐

Beato9.png 村民是最簡單的,你不需要承擔被質疑的壓力,導引村民勝利的壓力早期也不在你身上。

共有者不過是可以討論的必白村民,承受的是後期壓力。 靈能者只要在R靈日時跳靈,提供資訊後就乖乖被R靈上天國好了(? 埋毒者要乖乖表現像一個會推理的村民,就能夠討狼咬。 占卜師開始要主動推理找出狼人,不過說真的,他只要能提供情報就可以了。 獵人需要判別場上的大概分配,在最好的時機導引村莊走向勝利。 但是,這些情報,都是人狼留給你的。

Beato9.png 相信有人注意到了吧?能夠進行「選擇」的,只有人狼而已。而人側,只能是一個解題者。

要去了解「出題者」的想法,在無限的可能性中找到唯一的真相,則是人側的課題。

Beato1.png 最強的狼,也是最強的村民。

這篇深入思考,乃是從人狼再回到村民的思考之路是也。

前論

Beato3.png 這邊先講一下,這一頁這麼晚寫的原因是:妾身在算一題數學。數學題目如下:
現在有一個袋子,裡面有15顆球,其中12顆是紅球,2顆是白球,一顆紫球。

現在有A,B兩個人一起(同時)拿這個袋子裡的球。

當然,兩個人可能拿到同一顆球。

B有幾個規定:

1.絕對不會拿到白球。

2.當他拿到紫球時,他會放回袋內,之後再也不會碰紫球。 (如果跟A同時拿到,則移出紫球。)

3.拿到紅球時會拿出袋外。

A則很普通,拿到任何球都會拿出袋外。(即使跟B拿的是同一顆)
問題是:

1.A在8次取球內,每一次把白球或紫球取出的機率。

2.A在4次取球內取出紫球的機率。

3.不考慮紫球下,A在8次取球內,每一次把白球取出的機率。(把紫球當紅球)

4.B每一次拿到紫球的機率。

5.A在6次取球中,完全沒有拿到白球的機率。

Beato2.png 本來是想以理論做為基礎的,但是我算了三天三大張紙也算不完第一題.......
EdKnave2.png 喔…?這就是讓魔女困惑了一段時間的數學題嗎?指教指教。
Ed Knave1.png 等一下。……這背後有特別的意思嗎?還是別管了。
(自言自語:紅球代表村人,白球代表人狼,紫球代表妖狐嗎……
然後A做的是模擬占卜,B做的是模擬人狼襲擊……?
袋中的球就代表還沒被狼咬過的灰單囉?)
Ed Knave1.png 首先是第一題:A在8次取球內,每一次把白球或紫球取出的機率……

第一次:1/5 這個比較明顯。

Ed Knave1.png 然後……這裡大概就是教魔女感到氣結之處,我必須先找到通式才行。
設:某一回合行動前,有R顆紅球,W顆白球,P顆紫球,一共T顆。當中R屬於0-12,W屬於0-2,P屬於0-1,T屬於0-15。
往後,我們有不同的可能性:
  • AB取異紅:R(R-1) / T(T-W),若B曾取紫則為(R-1)/T
  • AB取同紅:R / T(T-W),若B曾取紫則為1/T
  • A取紅,B取紫:PR / T(T-W),若B曾取紫則為0
  • A取白,B取紫:WP / T(T-W),若B曾取紫則為0
  • A取白,B取紅:WR / T(T-W),若B曾取紫則為W/T
  • A取紫,B取紅:PR / T(T-W),若B曾取紫則為P/T
  • AB取同紫:P^2 / T(T-W),若B曾取紫則為0

(解題進度:第二回合完成)

Ed Knave3.png 等一下!這似乎與人狼界的現實有點脫節……要問一下魔女那邊有沒有追加的規定才行。
只要擺平了這個,我想要解決這些數學題就只是時間與耐性的問題而已……吧?
Beato2.png 看來有人想幫忙解的樣子,我解釋一下好了。

A是占卜,B是狼占主咬,紅球是村人,白球是狼,紫球是狐。
不考慮咬占,不考慮獵人,忘記靈能,18人場,真狂狼出占。
這個題目的重點是在純機率上,以占卜視點,1.他能占到非人的機率 2.4回內占狐的機率 3.8回內占到狼的機率 4.狼自己咬到狐的機率 5.無能占的機率

我所煩惱的其實是建構模型的部份,這樣我們就可以純粹的知道增加什麼成份會造成怎麼樣的偏移。(例如說人數越多,占卜到非人的機率會下降,但是增加的占卜次數會不會對整體造成影響!)

Beato9.png 我不希望是只用感覺的方式來寫深入思考。我可以很簡單的說如果蒙著頭占大概是30%,我自己看到後期用推測的是50%左右,但是我有可以100%確定一個。這樣沒有意義,因為你們不是我。
EdKnave2.png ……原來是真狼狂三占場嗎。所以我可以繼續解了。
在這模型下,儘管抽到只剩下紅球也要繼續就對了!
Ed Knave1.png 第三回合開始。不過……這開始變得複雜起來了……不得不用表格了


~七年後~
……マルコフ・チェーン」。
LatterKnave1.png ……五雷正法渡鏡海,一道靈光入玄關,文昌帝君急急如律令,敕!
LatterKnave2.png 馬可夫鏈的加護之下,我將解題的數據帶來了,它列出了指定時間之內指定事態的機率直到第十回合。
LatterKnave3.png 遙想當初,找出通式的嘗試其實就已隱含了馬可夫鏈的精神,只是當時還沒發現如何將運算自動化而已。
現在先回去設題那邊。
LatterKnave2b.png 因為A、B兩者的舉動,在這五題,我們只需選取符合條件的事態的機率簡單處理,而不需再作複雜的處理。

我指的是只有當前事態的機率分佈,也必定可以即座判斷所需的條件有沒有符合,或是只需簡單處理即可取得所需機率。

LatterKnave6.png 鑒於網絡流量攸關,運行需時,我這次用了電腦習慣的小數而不是分數,算到一定次數就可能會有捨入誤差,這一點還請注意。

想知道詳情的話也可以直接來這兒看試算表

LatterKnave2b.png 第一題:「A在8次取球內,每一次把白球或紫球取出的機率。」

這題不是直接加總,但還解得出。看事件的流向,將相應事態的機率乘以A抓到白或紫球的的機率即可。

LatterKnave4.png 抓白球的機率表在Q1a那頁。論一切事態的總和,則第一回合起算分別為約:

13.333...%、15.018%、16.552%、18.216%、20.143%、22.597%、26.264%、33.727%。
抓紫球的機率表在Q1b那頁。論一切事態的總和,則第一回合起算分別為約:
6.666...%、7.(912087)...%、8.(9876789)%、10.159%、11.529%、13.299%、15.990%、21.554%。

……還看得出可見的粗略規律吧,我猜。

LatterKnave4.png 第二題:「A在4次取球內取出紫球的機率。」

紫球有否被A取出,可從當前事態即座判斷。將紫球除外這種事情只有A才會幹。
在t=4的場合,是第四次取球完成的情形,將t=4一表所有無紫的事態加在一起即可。

因此,機率大約會是33.725%。

LatterKnave4.png 第三題:「不考慮紫球下,A在8次取球內,每一次把白球取出的機率。」備註「此時紫球等同紅球。」

這個與第一題同類。看著相應事態與通式,將它的機率乘以其「減白」判定的機率即可。

LatterKnave5.png ……慢著。這樣的話,解答不就是在Q1a的機率表嗎?--好吧。
LatterKnave4.png 第四題:「B每一次拿到紫球的機率。」

也是與第一題同類。紫球被B取出的同時,可以發生兩種結果。若AB兩者取得同一顆紫球,那就是「減紫」但不「減紅」,否則即是「顯紫」。
根據通式,將每一事態的機率乘以「B取紫」事件機率即可。

機率表在Q4那頁。論一切事態的總和,則第一回合起算,直到第十一回合執行的一瞬為止分別為約: 7.(692307)...%、7.(692307)...%、……

LatterKnave6.png 呃……好啦,我知道啦。首兩回合的數值剛好一樣,我也沒料到啊。
LatterKnave4.png 我們繼續吧,第三回合起算:

7.7712%、7.7948%、8.2549%、8.7371%、9.4817%、9.2810%、2.9763%、0.22942%、0.0053949%。

LatterKnave5.png 如今,您們大概都可以看見我的數據在第八回合就開始崩潰了,在這時間點,會有35.31%的機率是所有的球都被拿光了。

之後的情形類推到人狼界的現實,早就該R占R靈之類去了吧。

LatterKnave4.png 第五題:「A在6次取球中,完全沒有拿到白球的機率。」

與第二題同樣,白球有否被A取出,可從當前事態即座判斷,因為白球只有A才想碰。
將t=6一表一切含有二白的事態加在一起即可。

因此,機率大約會是23.175%。

LatterKnave8.png 呼--睽違七年,總算將魔女的模型問題算好了。電腦科學的加護啊……

如果維基的所見即所得模式支援表格複製的話,解說起來會輕鬆得多。

LatterKnave7.png 不過,我在人狼界裡還欠了另一個更重大的人情,這邊就先到此為止了。